首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics
Institution:1. Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China;2. School of Water and Environment, Chang''an University, Xi''an 710064, China;3. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;4. Institute of Advanced Electrochemical Energy School of Materials Science and Engineering, Xi''an University of Technology, and Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi''an 710048, China
Abstract:A kind of CdS/Cd-BiOCl immobilized films photocatalyst was prepared. The optical and physicochemical properties of the CdS/Cd-BiOCl photocatalysts were analysed, and the detailed characterization revealed CdS/Cd-BiOCl films photocatalyst with good charge carrier separation effect. The reusabilities and photocatalytic properties of the samples were studied. The 15%CdS/Cd-BiOCl photocatalyst exhibited superior performance in photocatalytic degradation of tetracycline (TC) and favorable stability under visible light irradiation. As for the photodegradation rate of TC, 15%CdS/Cd-BiOCl exhibited an excellent photodegradation activity, which is 4.06 and 9.53 times higher than that of CdS/Cd and BiOCl, respectively. The results showed that dominant active species are ?O2? and ?OH radicals during photodegradation. The charge transfer in Z-scheme CdS/Cd-BiOCl films photocatalyst could synchronously generate conduct band (CB) electrons in BiOCl and valence band (VB) holes in CdS, and metal Cd served as electron mediator. This work can be a reference for the design of film photocatalysts and new insight for photodegradating towards contaminants.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号