首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identify fine microstructure of multifarious iron oxides via O K-edge EELS spectra
Institution:1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;3. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
Abstract:Relying on the electron energy loss spectrum (EELS) of metallic elements to obtain microstructure analysis is an investigation method of the reaction mechanisms of transition metal oxides (TMOs) in catalysis, energy storage and conversion. However, the low signal from K shell owing to insufficient electron beam energy, and the complicated electronic structure in L shell of the metal element restrict the analysis of the coordination environment of the TMOs. Herein, density functional theory (DFT) calculation, Fourier transform (FT) and wavelet transform (WT) were employed to probe the relationship between the four individual peaks in O K-edge spectra of iron oxides and the microstructure information (chemical bonds and atomic coordination). The findings show that the peak amplitude ration is in a linear correlation with the valence state of Fe element, and that the coordination number obtained by radial distribution function (RDF) is favorably linearly correlative with that from the standard coordination structure model. As a result, the quantitative analysis on the change of valence state and atomic coordination in microstructure can be realized by EELS O K-edge spectra. This study establishes EELS O K-edge spectrum as a promising pathway to quantitatively analyze the valence state and atomic coordination information of TMOs, and offers an effective method to conduct microstructure analysis via the EELS spectra of the non-metal element.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号