首页 | 本学科首页   官方微博 | 高级检索  
     


Rational design of shortwave infrared (SWIR) fluorescence probe: Cooperation of ICT and ESIPT processes for sensing endogenous cysteine
Authors:Maoju Chang  Chenxu Yan  Lei Shi  Dan Li  Wei Fu  Zhiqian Guo
Affiliation:Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:Cysteine is well-known to be an important biothiol and related to many diseases. However, the in vivo detection of endogenous cysteine still suffers from lacking small-molecule fluorophores with both excitation and emission in the near-infrared (650-900 nm)/shortwave-infrared region. Herein, we report a molecular engineering strategy for shortwave infrared (SWIR, 900-1700 nm) sensing of cysteine, which integrated an excited-state intermolecular proton transfer (ESIPT) building block into the intramolecular charge transfer (ICT) scaffold. The obtained novel fluorophore SH-OH displays a maximum absorption at the NIR region, and emission at the SWIR region. We introduce the cysteine-recognition moiety to SH-OH structure, and demonstrate sensing of endogenous cysteine in living animals, using the SWIR emission as a reliable off-on fluorescence signal. This fluorophore design strategy of cooperation of ICT and ESIPT processes expands the in vivo sensing toolbox for accurate analysis in clinical applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号