首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Building multipurpose nano-toolkit by rationally decorating NIR-II fluorophore to meet the needs of tumor diagnosis and treatment
Institution:1. State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;2. Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China
Abstract:Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness. Developing advanced phototheranostic agents with long emission wavelength, excellent biocompatibility, great tumor-targeting capability, and efficient therapeutic effect is highly desirable. However, the mutual constraint between imaging and therapeutic functions usually hinders their wide applications in biomedical field. To balance this contradiction, we herein rationally designed and synthesized three novel tumor-targeted NIR-II probes (QR-2PEG321, QR-2PEG1000, and QR-2PEG5000) by conjugating three different chain lengths of PEG onto an integrin αvβ3-targeted NIR-II heptamethine cyanine fluorophore, respectively. In virtue of the essential amphiphilic characteristics of PEG polymers, these probes display various degree of aggregation in aqueous buffer accompanying with differential NIR-II imaging and photothermal (PTT) therapeutic performance. Both in vitro and in vivo results have demonstrated that probe QR-2PEG5000 has the best NIR-II imaging performance with prominent renal clearance, whereas QR-2PEG321 possesses excellent photoacoustic signal as well as PTT effect, which undoubtedly provides a promising toolbox for tumor diagnosis and therapy. We thus envision that these synthesized probes have great potential to be explored as a toolkit for precise diagnosis and treatment of malignant tumors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号