首页 | 本学科首页   官方微博 | 高级检索  
     


Dissection the endocytic routes of viral capsid proteins-coated upconversion nanoparticles by single-particle tracking
Affiliation:1. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China;2. State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China;3. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;4. College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Abstract:Real-time exploring the cellular endocytic pathway of viral capsid proteins (VCPs) functionalized nanocargos at the single-particle level can provide deep insight into the kinetic information involved in virus infection. In this work, porcine circovirus type 2 (PCV2) VCPs with different functions are modified onto the surface of upconversion nanoparticles (VCPs-UCNPs) to investigate the cellular internalization process in real-time. Clathrin-mediated endocytosis is found to be the essential uptake mechanism for these VCPs-UCNPs. Besides, it is verified that P1-UCNPs (PCV2 VCPs with nuclear localization signal, namely P1) can be easily assembled close to the perinuclear area, which is different from that of P2-UCNPs (PCV2 VCPs without nuclear localization signal, namely P2). Interestingly, multistep entry processes are observed. Particularly, confined diffusion is observed during the transmembrane process. The intracellular transport of VCPs-UCNPs is dependent on microtubules toward the cell interior. During this process, P1-UCNPs display increased velocities with active transport, while diffusion much faster around the perinuclear area. But for P2-UCNPs, there are only two phases involved in their endocytosis process. This study presents distinct dynamic mechanisms for the nanocargos with different functions, which would make a useful contribution to the development of robust drug delivery systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号