首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells
Affiliation:1. Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Small-molecule organic solar cells (SMOSCs) have attracted considerable attention owing to the merits of small molecules, such as easy purification, well-defined chemical structure. To achieve high-performance SMOSCs, the rational design of well-matched donor and acceptor materials is extremely essential. In this work, two new small molecular donor materials with subtle change in the conjugated side thiophene rings are synthesized. The subtle change significantly affects the photovoltaic performance of molecular donors. Compared with chlorinated molecule MDJ-Cl, the non-chlorinated analogue MDJ exhibits decreased miscibility with the non-fullerene acceptor Y6, can more efficiently quench the excitons of Y6. As a result, a improved PCE of 11.16% is obtained for MDJ:Y6 based SMOSCs. The results highlight the importance of fine-tuning the molecular structure to achieve high-performance SMOSCs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号