首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal study of accumulation of conformational disorders in the self-assembled monolayers of C8 and C18 alkanethiols on the Au111 surface
Authors:Prathima N  Harini M  Rai Neeraj  Chandrashekara R H  Ayappa K G  Sampath S  Biswas S K
Affiliation:Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India.
Abstract:The thermal stability of short alkanethiol CH(3)(CH(2))(7)SH (C(8)) and long C(18) self-assembled monolayers (SAMs) is investigated using grazing angle reflection-absorption infrared spectroscopy, cyclic voltammetry, and molecular dynamics simulation. We track the disordering of SAM by untilting and gauche defect accumulation with increasing temperature in the 300-440 K range, a range of interest to tribology. Molecular dynamics simulation with both fully covered and partially covered C(6), C(8), and C(18) monolayers brings out the morphological changes in the SAM, which may be associated with the observed thermal stability characteristics. The molecular dynamics simulations reveal that short-chain C(6) and C(8) alkanethiols are more defective at lower temperature than the long-chain C(18) alkanethiol. With increasing temperature disorder in the SAM, as reflected in both untilting and gauche defect accumulation, tends to saturate at temperatures below 360 K for short-chain SAMs such that any further increase in temperature, until desorption, does not lead to any significant change in conformational order. In contrast the disorder in the long-chain C(18) SAM increases monotonically with temperature beyond 360 K. Thus, in a practical range of temperature, the ability of a SAM to retain order with increasing thermal perturbations is governed by the state of disorder prior to heat treatment. This deduction derived from molecular dynamics simulation helps to rationalize the significant difference we have observed experimentally between the thermal response of short- and long-chain thiol molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号