首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct nanomechanical measurement of an anchoring transition in a nematic liquid crystal subject to hybrid anchoring conditions
Authors:Ruths Marina  Zappone Bruno
Institution:Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA. marina_ruths@uml.edu
Abstract:We have used a surface forces apparatus to measure the normal force between two solid curved surfaces confining a film of nematic liquid crystal (5CB, 4'-n-pentyl-4-cyanobiphenyl) under hybrid planar-homeotropic anchoring conditions. Upon reduction of the surface separation D, we measured an increasingly repulsive force in the range D = 35-80 nm, reaching a plateau in the range D = 10-35 nm, followed by a short-range oscillatory force at D < 5 nm. The oscillation period was comparable to the cross-sectional diameter of the liquid crystal molecule and characteristic of a configuration with the molecules parallel to the surfaces. These results show that the director field underwent a confinement-induced transition from a splay-bend distorted configuration at large D, which produces elastic repulsive forces, to a uniform planar nondegenerate configuration with broken homeotropic anchoring, which does not produce additional elastic forces as D is decreased. These findings, supported by measurements of the birefringence of the confined film at different film thicknesses, provide the first direct observation of an anchoring transition on the nanometer scale.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号