首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization
Authors:Ouédraogo Gladys D  Redmond Robert W
Institution:Wellman Laboratories of Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
Abstract:The type-II photosensitization process is mediated by the formation of singlet oxygen (O21deltag]). The short lifetime of this species dictates that chemical reactions with biological substrates can only occur when O2(1deltag) is in very close proximity to the photosensitizer itself. In this study, deuteroporphyrin, a type-II, membrane-localized photosensitizer, was used to generate O2(1deltag) in human lymphoblast WTK-1 cells, and the range of influence was determined by a variety of biological assays. Surprisingly, the initial membrane-confined events were shown, by comet assay, to induce DNA damage in these cells. DNA damage was inhibited both by membrane-localized (alpha-tocopherol acetate) and by cytoplasmic (trolox) free radical scavengers. Comet formation also was inhibited by treatment at low temperature. DNA fragmentation was not influenced by treatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, showing that apoptosis was not responsible for fragmentation. Taken together, these results show that primary photosensitization reactions involving O2(1deltag), even when tightly confined in extranuclear locations, leads to the production of secondary reactive oxygen species, probably as a result of lipid peroxidation, that can act at greater distances from the photosensitizer itself. These experiments were carried out under conditions where cell survival was significant and raise questions regarding DNA damage and mutagenesis pathways, even when extranuclear O2(1deltag)-generating compounds are used.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号