首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Complexity in the self-assembly of bifunctional molecules on HOPG: the influence of solvent functionality on self-assembled structures
Authors:Tao Feng  Bernasek Steven L
Institution:Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009, USA.
Abstract:Self-assembled monolayers of bifunctional molecules HOOC(CH2)nCOOH (n = 20, 18, 16, 14, 12, 10), HOOC(CH2)nCH2OH (n = 13, 14), and HOCH2(CH2)14CH2OH dissolved in octanoic acid were investigated using scanning tunneling microscopy, to understand the self-assembly of bifunctional molecules and the influence of a carboxylic acid solvent on the formation of self-assembled structures on HOPG. In the series of di-acids (HOOC(CH2)nCOOH), only HOOC(CH2)20COOH forms stable coadsorption structures with the solvent octanoic acid. The remaining di-acids form stable single-component monolayers and do not coadsorb with solvent octanoic acid. Coadsorption structures involving mixtures of di-acids were observed. This result suggests that coadsorption with acid solvent or with other di-acids occurs to maximize hydrogen-bond density in the overlayer. A quantitative model based on this concept is proposed. For hetero-bifunctional molecules HOOC(CH2)nCH2OH (n = 13, 14), the coadsorption of HOOC(CH2)14CH2OH and octanoic acid at the molecular level produces a microscopic mesh made of homogeneously arranged openings with a dimension of approximately 12.5 A x approximately 5.0 A x approximately 1.8 A. For the hetero-bifunctional molecule HOOC(CH2)13CH2OH, hydroxyl groups of two adjacent lamellae assemble to form a herringbone geometry, and the two carboxylic acid groups assemble with a straight head-to-head configuration. In addition, a new mixed hydrogen-bonding network of COOH...O-H was observed in another self-assembled structure of this molecule. The bifunctional molecule HOCH2(CH2)14CH2OH exhibits multiple packing patterns on HOPG via different hydrogen-bonding networks. HOCH2(CH2)14CH2OH self-assembles using the H-O...O-H network typical of the n-alcohol herringbone structure, forming an asymmetric adsorbate on HOPG. It also forms domains with another hydrogen-bonding network, in which molecules in adjacent lamellae are parallel to each other. This investigation demonstrates the complexity and diversity of self-assembled structures formed from bifunctional molecules on solid surfaces. It also indicates that a solvent with the same functional group as the solute can significantly impact the formation of the self-assembled structures of these bifunctional molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号