首页 | 本学科首页   官方微博 | 高级检索  
     


Structures, stabilities, and electronic and optical properties of C52 fullerene, ions, and metallofullerenes
Authors:Chen De-Li  Tian Wei Quan  Feng Ji-Kang  Sun Chia-Chung
Affiliation:State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
Abstract:The 437 classical isomers of fullerene C52 have been studied by PM3, HCTH/3-21G, and B3LYP6-31G(d). C(2):029 with the least number of adjacent pentagons is predicted to be the most stable isomer. The investigations show that both the number of adjacent pentagons and the degree of aromaticity play important roles in the relative stabilities of fullerene isomers. To clarify the relative stabilities of the C52 isomers in a wide range of temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP6-31G(d) level. C(2):029 prevails in a wide temperature range. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and sum-over-states model. The static second-order hyperpolarizability of C(2):029 is 51% larger than that of C60. Furthermore, intensity-dependent refractive index gamma (-omega;omega,omega,-omega) (omega=1.1653 eV) of C(2):029 is 13 times larger than that of C60. The encapsulation of Ca atom in C52 fullerene is exothermic and the metallofullerene Ca-C52 is described as Ca2+-C52(2-).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号