首页 | 本学科首页   官方微博 | 高级检索  
     


Equilibrium and Transport Properties of Sodium n-Octyl Sulfonate Aqueous Solutions
Authors:Ornella Ortona  Gerardino D'Errico  Luigi Paduano  Vincenzo Vitagliano
Affiliation:(1) Chemistry Department of Naples University Federico II, Via Cintia, Complesso di Monte S. Angelo, 80126 Napoli, Italy
Abstract:Measurements of osmotic coefficients, mutual diffusion coefficients, and conductivity were performed on the binary system sodium n-octyl sulfonate (C8SO3Na)–water at 25°C both below and above the micellar composition range. The osmotic coefficient data were obtained through vapor-pressure osmometry, while the Taylor dispersion method was used to measure diffusion coefficients. The mass equilibrium model was applied to this self-aggregating system, taking into account the deviation of the activity coefficients from the Debye–Hückel limiting law by using the Guggenheim corrective terms for mixed electrolyte solutions. The expressions derived from the model fit the experimental osmotic and diffusion coefficient data well, when the same values of aggregation number, fraction of condensed counterions, and equilibrium constant are used. Osmotic coefficients were also used to determine the thermodynamic factor required to compute the solute mobility from diffusion data. Conductivity data were used to test two theoretical models, namely, the Onsager–Fuoss and the Mean Spherical Approximation theories. Both models have been found to yield unsatisfactory fits to our experimental data and some arbitrary terms had to be applied to the theoretical expressions to obtain good agreement between experiment and theory.
Keywords:Surfactant  mutual diffusion  osmotic coefficient  conductivity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号