首页 | 本学科首页   官方微博 | 高级检索  
     

基于极端学习机的多变量混沌时间序列预测
引用本文:王新迎,韩敏. 基于极端学习机的多变量混沌时间序列预测[J]. 物理学报, 2012, 61(8): 80507-080507
作者姓名:王新迎  韩敏
作者单位:大连理工大学电子信息与电气工程学部,大连,116023
基金项目:国家自然科学基金(批准号: 61074096)资助的课题.
摘    要:针对多变量混沌时间序列预测问题, 提出了一种基于输入变量选择和极端学习机的预测模型. 其基本思想是 对多变量混沌时间序列进行相空间重构后, 采用互信息方法选择与预测输出统计相关最高的重构输入变量, 借助极端学习机的通用逼近能力建立多变量混沌时间序列的预测模型. 为进一步提高预测精度, 采用模型选择算法选择具有最小期望风险的极端学习机预测模型. 基于Lorenz, Rössler多变量混沌时间序列及Rössler超混沌时间序列的仿 真结果证明所提方法的有效性.

关 键 词:混沌时间序列预测  输入变量选择  极端学习机  模型选择
收稿时间:2011-07-17

Multivariate chaotic time series prediction based on extreme learning machine
Wang Xin-Ying,Han Min. Multivariate chaotic time series prediction based on extreme learning machine[J]. Acta Physica Sinica, 2012, 61(8): 80507-080507
Authors:Wang Xin-Ying  Han Min
Affiliation:Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116023, China
Abstract:For multivariate chaotic time series prediction problem, a prediction based on input variable selection and extreme learning machine is proposed in this paper. The multivariate chaotic time series is reconstructed in phase space, and a mutual information based method is used to select the input variables, which have high statistics information with the output variables. The extreme learning machine is conducted to model the multivariate chaotic time series in the phase space by utilizing its approximation capability. In order to improve the prediction accuracy, a model selection algorithm is conducted for extreme learning machine to choose an expected minimum risk prediction model. Simulation results based on Lorenz, Rössler multivariate chaotic time series and Rössler hyperchaotic time series show the effectiveness of the proposed method.
Keywords:chaotic time series prediction  input variables selection  extreme learning machine  model selection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号