Abstract: | Cyanide Bridged Coordination Polymers from cis‐ or trans‐[Ru(tBuNC)4(CN)2] and MnCl2: About the Influence of Different Topologies on the Magnetic Properties of Materials The reaction of cis‐ or trans‐[Ru(tBuNC)4(CN)2] with MnCl2 as an additional transition metal fragment yields the one dimensional coordination polymers {cis‐[Ru(CN)2(tBuNC)4] MnCl2}n, ( 1 ), and {trans‐[Ru(CN)2(tBuNC)4]MnCl2}n, ( 2 ), with a different arrangement of the metal centers caused by the different stereochemistry of the starting compounds. The variation of the Ru‐C‐N‐Mn geometry nevertheless leads to significant differences in the magnetic properties of 1 and 2 . The coordination polymer derived from trans‐[Ru(tBuNC)4(CN)2] shows a more efficient antiferromagnetic intrachain interaction between the manganese centers compared to the cis‐derivative. |