首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical studies on water–tetracaine interaction
Authors:R. C. Bernardi  D. E. B. Gomes  P. G. Pascutti  A. S. Ito  A. T. Ota
Abstract:The action of local anesthetics (LA) is controversial. There is experimental evidence that the unprotonated form of LA penetrates the axon, while the charged form acts in the intracellular phase. To obtain some insight on the structure of the local anesthetics tetracaine and its pharmacological action, we made calculations using the density functional theory (DFT) method. After those calculations, we performed molecular dynamics (MD) simulations in a p, N, T ensemble, in an aqueous environment, on both unprotonated and protonated forms of the molecule. The radial distribution function was used to study water solvent effects, through the characterization of the affinity of tetracaine to water. The results indicate that the molecule has regions with different degree of hydrophobicity, and the N‐terminal of the anesthetic was primarily affected by changes in the protonation state of the anesthetic. The pH‐dependent activity of TTC should then be analyzed in view of local changes in different regions of the molecule, rather than in terms of general effects on the hydrophobicity of the molecule as a whole. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006
Keywords:density functional theory  molecular dynamics  radial distribution function  local anesthetics  hydrophobicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号