首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fe(CO)4 flexible as a two‐level system avoided conical intersection
Authors:E S Apostolova
Abstract:This article reports new square‐planar Fe(CO)4 D4h structures that are optimized, using the Hartree–Fock (HF) approach, and multiconfiguration self‐consistent field (MCSCF) theory in active space 2b2g2ega1ga2u]8, and which energy increased in sequence: 3B2g TS < 1A1g TS < 1A1g GS. A triple ζ valence basis set supplemented with 4f for Fe and 3d for C and O polarization shells TZV (DF)] was used. At the HF/TZV (DF) level, 1A1g TS and 3B2g TS (3B2g TS energetically more favorable), there are transition states of tetrahedral inversion (defining stereochemical flexibility of Fe(CO)4) between known equivalent 1A1 and 3B2 Jahn–Teller distorted tetrahedron C2v structures with activation energy at ~0.96 kcal/mol according to the experimental data. 1A1g TS differs from 1A1g GS in electronic configuration by occupation of a1g and a2u MOs. At the MCSCF/ TZV (DF) level, 1A1g TS and 1A1g GS are optimized as near‐pure states in different potential energy surfaces (PES) avoided conical intersection with near‐equal interatomic distances, and define electronic flexibility of Fe(CO)4. Estimation of the energy separation in a two‐level system that avoids a conical intersection from vibrational spectrum is based on the effective Hamiltonian of the perturbation theory. The energy gap between two square‐planar Fe(CO)4 D4h 1A1g TS < 1A1g GS is 0.27 kcal/mol. The energy gap between 1A1g GS and 1A1 is 1.28 kcal/mol. It is possible to observe 3B2, 1A1 and 1A1g GS separately in the course of the experiment. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006
Keywords:Fe(CO)4  MCSCF  two‐level system avoided conical intersection  energy separation  harmonic vibrations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号