首页 | 本学科首页   官方微博 | 高级检索  
     

硅衬底生长的InGaN/GaN多层量子阱中δ型硅掺杂n-GaN层对载流子复合过程的调节作用
引用本文:周之琰,杨坤,黄耀民,林涛,冯哲川. 硅衬底生长的InGaN/GaN多层量子阱中δ型硅掺杂n-GaN层对载流子复合过程的调节作用[J]. 发光学报, 2018, 39(12): 1722-1729. DOI: 10.3788/fgxb20183912.1722
作者姓名:周之琰  杨坤  黄耀民  林涛  冯哲川
作者单位:广西大学 物理科学与工程技术学院, 广西相对论天体物理区重点实验室, 广西 南宁 530004
基金项目:国家自然科学基金(61504030,11533003,U1731239);广西自然科学基金(2015GXNSFCA139007)资助项目
摘    要:为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入δ-Si掺杂的n-GaN层后,非辐射复合平均激活能由(18±3)meV升高到(38±10)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。

关 键 词:InGaN/GaN多层量子阱  光致荧光  时间分辨荧光谱  硅衬底
收稿时间:2018-03-15

Recombination Process in InGaN/GaN MQW LED on Silicon with δ-Si Doped n-GaN Layer
ZHOU Zhi-yan,YANG Kun,HUANG Yao-min,LIN Tao,FENG Zhe-chuan. Recombination Process in InGaN/GaN MQW LED on Silicon with δ-Si Doped n-GaN Layer[J]. Chinese Journal of Luminescence, 2018, 39(12): 1722-1729. DOI: 10.3788/fgxb20183912.1722
Authors:ZHOU Zhi-yan  YANG Kun  HUANG Yao-min  LIN Tao  FENG Zhe-chuan
Affiliation:Laboratory of Optoelectronic Materials & Detection Technology, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
Abstract:The emission efficiency of InGaN/GaN multiple quantum well(MQW) light emitting diode(LED) reduces if it is grown on single crystalline silicon substrates because of the enhanced strain between interfaces. A possible strategy to solve this problem is introducing periodic Si δ-doped GaN instead of Si uniformly doped GaN as the n-GaN layer. In this work, steady-state(SS) photoluminescence spectra(PL) and time-resolved(TR) PL spectra for LED sample with either Si uniformly doped GaN or periodic Si δ-doped GaN working as n-type GaN layer were tested for comparison. Relative emission efficiencies and recombination rates for each sample were extracted, then systematically analyzed. The results turned out that:the main PL peak redshifted from 531 nm to 579 nm after introducing periodic Si δ-doped n-GaN layer; the average activation energy related to nonradiative recombination increased from (18±3) meV to (38±10) meV, as well as the decreasing of nonradiative recombination rate became slower with increasing temperature, and the nonradiative recombination rate at room temperature became smaller; at the same time, the average radiative recombination rate decreased with increasing temperature in major temperature range, which indicated that exciton localization dominated the radiative recombination processes. The average depth of localized state for excitons increased and the average radiative recombination rate at low temperature decreased. To sum up, because of the releasing of strain in MQW, the defect density that related to nonradiative recombination can be reduced, and the device performance can be improved if using periodic Si δ-doped n-GaN layer to replace Si uniformly doped GaN working as n-type GaN layer in InGaN/GaN MQW LED on silicon substrate.
Keywords:InGaN/GaN multiple quantum well  luminescence  time-resolved photoluminescence  silicon substrate
点击此处可从《发光学报》浏览原始摘要信息
点击此处可从《发光学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号