首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic isotope effects of L-Dopa decarboxylase
Authors:Lin Yen-lin  Gao Jiali
Institution:Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Abstract:A mixed centroid path integral and free energy perturbation method (PI-FEP/UM) has been used to investigate the primary carbon and secondary hydrogen kinetic isotope effects (KIEs) in the amino acid decarboxylation of L-Dopa catalyzed by the enzyme L-Dopa decarboxylase (DDC) along with the corresponding uncatalyzed reaction in water. DDC is a pyridoxal 5'-phosphate (PLP) dependent enzyme. The cofactor undergoes an internal proton transfer between the zwitterionic protonated Schiff base configuration and the neutral hydroxyimine tautomer. It was found that the cofactor PLP makes significant contributions to lowering the decarboxylation barrier, while the enzyme active site provides further stabilization of the transition state. Interestingly, the O-protonated configuration is preferred both in the Michaelis complex and at the decarboxylation transition state. The computed kinetic isotope effects (KIE) on the carboxylate C-13 are consistent with that observed on decarboxylation reactions of other PLP-dependent enzymes, whereas the KIEs on the α carbon and secondary proton, which can easily be validated experimentally, may be used as a possible identification for the active form of the PLP tautomer in the active site of DDC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号