首页 | 本学科首页   官方微博 | 高级检索  
     


Multiscale coarse-graining and structural correlations: connections to liquid-state theory
Authors:Noid W G  Chu Jhih-Wei  Ayton Gary S  Voth Gregory A
Affiliation:Center for Biophysical Modeling and Simulation, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112-0850, USA.
Abstract:A statistical mechanical framework elucidates the significance of structural correlations between coarse-grained (CG) sites in the multiscale coarse-graining (MS-CG) method (Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469; J. Chem. Phys. 2005, 123, 134105). If no approximations are made, then the MS-CG method yields a many-body multidimensional potential of mean force describing the interactions between CG sites. However, numerical applications of the MS-CG method typically employ a set of pair potentials to describe nonbonded interactions. The analogy between coarse-graining and the inverse problem of liquid-state theory clarifies the general significance of three-particle correlations for the development of such CG pair potentials. It is demonstrated that the MS-CG methodology incorporates critical three-body correlation effects and that, for isotropic homogeneous systems evolving under a central pair potential, the MS-CG equations are a discretized representation of the well-known Yvon-Born-Green equation. Numerical calculations validate the theory and illustrate the role of these structural correlations in the MS-CG method.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号