Revision of the dissociation energies of mercury chalcogenides--unusual types of mercury bonding. |
| |
Authors: | Michael Filatov Dieter Cremer |
| |
Affiliation: | Department of Theoretical Chemistry, G?teborg University Reutersgatan 2, 41320 G?teborg, Sweden. filatov@theoc.gu.se |
| |
Abstract: | Mercury chalcogenides HgE (E=O, S, Se, etc.) are described in the literature to possess rather stable bonds with bond dissociation energies between 53 and 30 kcal mol(-1), which is actually difficult to understand in view of the closed-shell electron configuration of the Hg atom in its ground state (...4f(14)5d(10)6s(2)). Based on relativistically corrected many body perturbation theory and coupled-cluster theory [IORAmm/MP4, Feenberg-scaled IORAmm/MP4, IORAmm/CCSD(T)] in connection with IORAmm/B3LYP theory and a [17s14p9d5f]/aug-cc-pVTZ basis set, it is shown that the covalent HgE bond is rather weak (2-7 kcal mol(-1)), the ground state of HgE is a triplet rather than a singlet state, and that the experimental bond dissociation energies have been obtained for dimers (or mixtures of monomers, dimers, and even trimers) Hg2E2 rather than true monomers. The dimers possess association energies of more than 100 kcal mol(-1) due to electrostatic forces between the monomer units. The covalent bond between Hg and E is in so far peculiar as it requires a charge transfer from Hg to E (depending on the electronegativity of E) for the creation of a single bond, which is supported by electrostatic forces. However, a bonding between Hg and E is reduced by strong lone pair-lone pair repulsion to a couple of kcal mol(-1). Since a triplet configuration possesses somewhat lower destabilizing lone pair energies, the triplet state is more stable. In the dimer, there is a Hg-Hg pi bond of bond order 0.66 without any a support. Weak covalent Hg-O interactions are supported by electrostatic bonding. The results for the mercury chalcogenides suggests that all experimental dissociation energies for group-12 chalcogenides have to be revised because of erroneous measurements. |
| |
Keywords: | ab initio calculations gas‐phase reactions isomers mercury |
|
|