首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems
Authors:Slimane Adjerid  Joseph E Flaherty
Institution:(1) Department of Computer Science, Rensselaer Polytechnic Institute, 12180-3590 Troy, NY, USA
Abstract:Summary We discuss an adaptive local refinement finite element method of lines for solving vector systems of parabolic partial differential equations on two-dimensional rectangular regions. The partial differential system is discretized in space using a Galerkin approach with piecewise eight-node serendipity functions. An a posteriori estimate of the spatial discretization error of the finite element solution is obtained using piecewise fifth degree polynomials that vanish on the edges of the rectangular elements of a grid. Ordinary differential equations for the finite element solution and error estimate are integrated in time using software for stiff differential systems. The error estimate is used to control a local spatial mesh refinement procedure in an attempt to keep a global measure of the error within prescribed limits. Examples appraising the accuracy of the solution and error estimate and the computational efficiency of the procedure relative to one using bilinear finite elements are presented.Dedicated to Prof. Ivo Babuscaronka on the occasion of his 60th birthdayThis research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR 85-0156 and the U.S. Army Research Office under Contract Number DAAL 03-86-K-0112
Keywords:AMS(MOS):65N30  CR: G 1  8
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号