首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic modeling and simulation of deploying process for space solar power satellite receiver
Authors:Tingting Yin  Zichen Deng  Weipeng Hu  Xindong Wang
Institution:1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China;2. State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116023, Liaoning Province, China
Abstract:To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kuttamethod is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method©First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability.
Keywords:fibre bundle  controllability  observability  minimality  separate and transform  Rayleigh damping  symplectic Runge-Kutta method  structure preserving  solar power satellite  
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号