首页 | 本学科首页   官方微博 | 高级检索  
     

基于可见-近红外光谱技术预测茶鲜叶全氮含量
引用本文:胡永光,李萍萍,母建华,毛罕平,吴才聪,陈斌. 基于可见-近红外光谱技术预测茶鲜叶全氮含量[J]. 光谱学与光谱分析, 2008, 28(12): 2821-2825. DOI: 10.3964/j.issn.1000-0593(2008)12-2821-05
作者姓名:胡永光  李萍萍  母建华  毛罕平  吴才聪  陈斌
作者单位:现代农业装备与技术教育部重点实验室(江苏大学)江苏大学江苏省现代农业装备与技术重点实验室,江苏,镇江,212013;现代农业装备与技术教育部重点实验室(江苏大学)江苏大学江苏省现代农业装备与技术重点实验室,江苏,镇江,212013;北京大学遥感与地理信息系统研究所,北京,100871;江苏大学食品与生物工程学院,江苏,镇江,212013
基金项目:国家自然科学基金,国家科技支撑计划,江苏大学博士创新基金和现代农业装备与技术重点实验室开放基金 
摘    要:为快速无损监测茶树氮素营养及其生长状况,基于可见-近红外光谱技术建立了茶鲜叶全氮含量的预测模型。以茶鲜叶为对象,田间试验使用便携式光谱仪采集叶片漫反射光谱信息,通过不同预处理和统计分析,建立茶鲜叶全氮含量预测的光谱模型。试验共采集111个样品,其中86个样品作校正集,25个样品作预测集。通过一阶导数与滑动平均滤波相结合的预处理方法,用7个主成分建立的偏最小二乘模型最好,其校正集均方根误差(RMSEC)为0.097 3,预测集的相关系数为0.888 1,预测均方根误差(RMSEP)为0.130 4,预测的平均相对误差为4.339%。研究结果表明,利用可见-近红外光谱技术可以很好地预测茶鲜叶全氮含量,对于快速实时监测茶树长势和施肥管理具有重要指导意义。

关 键 词:可见-近红外光谱  偏最小二乘回归  茶鲜叶  全氮含量  预测
收稿时间:2007-08-08

Determination of Total Nitrogen Content in Fresh Tea Leaf Using Visible-Near Infrared Spectroscopy
HU Yong-guang,LI Ping-ping,MU Jian-hua,MAO Han-ping,WU Cai-cong,CHEN Bin. Determination of Total Nitrogen Content in Fresh Tea Leaf Using Visible-Near Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(12): 2821-2825. DOI: 10.3964/j.issn.1000-0593(2008)12-2821-05
Authors:HU Yong-guang  LI Ping-ping  MU Jian-hua  MAO Han-ping  WU Cai-cong  CHEN Bin
Affiliation:1. Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education(Jiangsu University), Jiangsu Provincial Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China3. Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China
Abstract:To monitor tea tree growth and nitrogen nutrition in tea leaves,visible-near infrared spectroscopy was used to determine total nitrogen content.One hundred eleven fresh tea leaves of different nitrogen levels were sampled according to different tea type,plant age,leaf age,leaf position and soil nutrients,which covered a wide range of nitrogen content.Visiblenear infrared reflectance spectra were scanned under the sunlight with a portable spectroradiometer(ASD FieldSpec 3) in field.The software of NIRSA developed by Jiangsu University was used to establish the calibration models and prediction models,which included spectra data editing,preprocessing,sample analysis,spectrogram comparison,calibration model and prediction model,analysis reporting and system configuration.Eighty six samples were used to establish the calibration model with the preprocessing of first/second-order derivative plus moving average filter and the algorithm of PLS regression,stepwise regression,principal component regression,PLS regression plus artificial neural network and so on.The result shows that the PLS regression calibration model with 7 principal component factors after the preprocessing of first-order derivative plus moving average filter is the best and correspondingly the root mean square error of calibration is 0.973.Twenty five unknown samples were used to establish the prediction model and the correlation coefficient between predicted values and real values is 0.888 1,while the root mean square error of prediction is 0.130 4 with the mean relative error of 4.339%.Therefore,visible-near infrared spectroscopy has a huge potential for the determination of total nitrogen content in fresh tea leaves in a rapid and nondestructive way.Consequently,the technique can be significant to monitoring the tea tree growth and fertilization management.
Keywords:Visible-near infrared spectroscopy  Partial least squares regression  Fresh tea leaf  Total nitrogen content
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号