首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational energy transfer in O2(X 3sigma(g)-, upsilon=2,3) + O2 collisions at 330 K
Authors:Kalogerakis Konstantinos S  Copeland Richard A  Slanger Tom G
Institution:Molecular Physics Laboratory, SRI International, Menlo Park, California 94025, USA.
Abstract:Vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) by O2 molecules is studied via a two-laser approach. Laser radiation at 266 nm photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O2(a 1delta(g)) that is rapidly converted to O2(X 3sigma(g)-, upsilon=2,3) in a near-resonant adiabatic electronic energy-transfer process involving collisions with ground-state O2. The output of a tunable 193-nm ArF laser monitors the temporal evolution of the O2(X 3sigma(g)-, upsilon=2,3) population via laser-induced fluorescence detected near 360 nm. The rate coefficients for the vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) in collision with O2 are 2.0(-0.4)(+0.6) x 10(-13) cm3 s(-1) and (2.6+/-0.4) x 10(-13) cm3 s(-1), respectively. These rate coefficients agree well with other experimental work but are significantly larger than those produced by various semiclassical theoretical calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号