首页 | 本学科首页   官方微博 | 高级检索  
     


Facile fabrication of mesoporous manganese oxides as advanced electrode materials for supercapacitors
Authors:Lu Chen  Ningyu Gu  Rui Ding  Li Qi  Hongyu Wang
Affiliation:1. Department of Chemistry, Nanchang University, Nanchang, 330031, China
2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
3. Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
Abstract:Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g?1), high-rate capability (123 F g?1 at 4 A g?1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g?1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg?1 and 20.9 Wh kg?1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g?1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号