首页 | 本学科首页   官方微博 | 高级检索  
     


HPLC/APCI Mass Spectrometry of Saturated and Unsaturated Hydrocarbons by Using Hydrocarbon Solvents as the APCI Reagent and HPLC Mobile Phase
Authors:Jinshan?Gao,Benjamin?C.?Owen,David?J.?Borton  Suffix"  >II,Zhicheng?Jin,Hilkka?I.?Kentt?maa  author-information"  >  author-information__contact u-icon-before"  >  mailto:hilkka@purdue.edu"   title="  hilkka@purdue.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
Abstract:Saturated and unsaturated, linear, branched, and cyclic hydrocarbons, as well as polyaromatic and heteroaromatic hydrocarbons, were successfully ionized by atmospheric pressure chemical ionization (APCI) using small hydrocarbons as reagents in a linear quadrupole ion trap (LQIT) mass spectrometer. Pentane was proved to be the best reagent among the hydrocarbon reagents studied. This ionization method generated different types of abundant ions (i.e., [M + H]+, M+•, [M – H]+ and [M – 2H]+ •), with little or no fragmentation. The radical cations can be differentiated from the even-electron ions by using dimethyl disulfide, thus facilitating molecular weight (MW) determination. While some steroids and lignin monomer model compounds, such as androsterone and 4-hydroxy-3-methoxybenzaldehyde, also formed abundant M+• and [M + H]+ ions, this was not true for all of them. Analysis of two known mixtures as well as a base oil sample demonstrated that each component of the known mixtures could be observed and that a correct MW distribution was obtained for the base oil. The feasibility of using this ionization method on the chromatographic time scale was demonstrated by using high-performance liquid chromatography (HPLC) with hexane as the mobile phase (and APCI reagent) to separate an artificial mixture prior to mass spectrometric analysis.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号