首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural basis for the enantioselectivity of an epoxide ring opening reaction catalyzed by halo alcohol dehalogenase HheC
Authors:de Jong René M  Tiesinga Jan J W  Villa Alessandra  Tang Lixia  Janssen Dick B  Dijkstra Bauke W
Institution:Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands.
Abstract:Halo alcohol dehalogenase HheC catalyzes the highly enantioselective dehalogenation of vicinal halo alcohols to epoxides, as well as the reverse reaction, the enantioselective and beta-regioselective nucleophilic ring opening of epoxides by pseudo-halides such as azide and cyanide. To investigate this latter reaction, we determined X-ray structures of complexes of HheC with the favored and unfavored enantiomers of para-nitrostyrene oxide. The aromatic parts of the two enantiomers bind in a very similar way, but the epoxide ring of the unfavored (S)-enantiomer binds in a nonproductive inverted manner, with the epoxide oxygen and Cbeta atom positions interchanged with respect to those of the favored (R)-enantiomer. The calculated difference in relative Gibbs binding energy is in agreement with the observed loss of a single hydrogen bond in the S bound state with respect to the R bound state. Our results indicate that it is the nonproductive binding of the unfavored (S)-enantiomer, rather than the difference in affinity for the two enantiomers, that allows HheC to catalyze the azide-mediated ring opening of para-nitrostyrene oxide with high enantioselectivity. This work represents a rare opportunity to explain the enantioselectivity of an enzymatic reaction by comparison of crystallographic data on the binding of both the favored and unfavored enantiomers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号