首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrathin metals films on W(221): Structure, electronic properties and reactivity
Institution:

* Department of Physics and Astronomy and Laboratory for Surface Modification, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019, U.S.A.

2 Physics Department, North Carolina State University, Raleigh, NC 27695, U.S.A.

Abstract:Nanoscale pyramidal facets with (211) faces are formed when W(111) surface is covered by monolayer film of certain metals (including Pt, Pd and Au) and annealed to T ≥ 750 K. In the present work, we focus on the structure, electronic properties and reactivity of planar W(211) covered by ultrathin films of platinum and palladium. The measurements include soft X-ray photoelectron spectroscopy using synchrotron radiation, Auger electron spectroscopy, low energy electron diffraction (LEED) and thermal desorption spectroscopy. The metal film growth and evolution during annealing has been investigated for coverages ranging from 0 to 8 monolayers. The films grow initially in a layer-by-layer mode at 300 K. LEED, Auger, and Surface Core Level Shift (SCLS) measurements reveal that for coverages of one monolayer, the films are stable up to temperatures at which desorption occurs. In contrast, at higher coverages, SCLS data indicate that surface alloys are formed upon annealing films of Pt and Pd; surface alloy formation is not seen for Au overlayers. These findings are discussed in terms of structural and electronic properties of these bimetallic systems. Relevance to catalytic properties for acetylene cyclization over Pd/W(211) is also discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号