首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of standard phase differences between gas and liquid and the resulting experimental bias in the analysis of gaseous volatile organic compounds
Authors:Yong-Hyun Kim  Ki-Hyun Kim
Affiliation:Department of Environment & Energy, Sejong University, Seoul, Republic of Korea
Abstract:Liquid- or gas-phase standards can be used for the analysis of VOCs in air. Once the accuracy is secured in the standard preparation stage, the use of gas-phase standard should be more reliable with the least matrix effect. However, it is not difficult to find that the liquid-phase standard is used more preferably in many laboratories for several reasons (e.g., low expense, easy handling, etc.). As such, one needs to accurately evaluate any possible bias stemming from the use of different standard phases. To this end, standards for 8 VOCs consisting of 4 aromatic compounds (benzene (B), toluene (T), styrene (S) and p-xylene (p-X)) and 4 others (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), butyl acetate (BuAc), and isobutyl alcohol (i-BuAl)) were prepared in both liquid and gas phases. Each standard was analyzed by the initial collection on the adsorption tube and by the combined application of thermal-desorption–gas chromatography–mass spectrometry (TD/GC/MS). The results indicated that experimental bias between the two phases, if expressed in terms of percent difference (PD), was very low in many target VOCs (B (1.09%), T (2.41%), p-X (3.64%), MEK (6.76%), and MIBK (0.17%)), while it was not in some targets (e.g., >10%: e.g., S, i-BuAl, and BuAc). In an ancillary experiment, biases were evaluated further by (1) calibrating gaseous samples against liquid phase standard and via (2) comparison between two different types of gas phase standards. In conclusion, treatment of different standards (e.g., between the same or different phases) will inevitably induce biases in most VOCs, although certain volatiles (e.g., benzene, MIBK, etc.) are virtually unaffected by such variables in a practical sense.
Keywords:Standard   Thermal desorption   Bias   Calibration   Odorant   Matrix effect
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号