首页 | 本学科首页   官方微博 | 高级检索  
     


Solution‐Based Phototransformation of C60 Nanorods: Towards Improved Electronic Devices
Authors:Hamid Reza Barzegar  Christian Larsen  Ludvig Edman  Thomas Wågberg
Affiliation:Department of Physics, Ume? University, , SE‐901 87 Ume?, Sweden
Abstract:A modified liquid–liquid interface precipitation synthesis of C60 nanorods, effects and opportunities following an in situ photochemical transformation in the liquid state, and an electronic characterization using a field‐effect transistor (FET) geometry are reported. The nanorods feature a high aspect ratio of ≈103 and a notably small average diameter of 172 nm. Interestingly, it is found that a decreased nanorod diameter appears to correlate with distinctly improved electronic properties, and an average electron mobility of 0.30 cm2 V?1 s?1, as measured in a FET geometry, is reported for as‐grown nanorods, with the peak value being an impressive 1.0 cm2 V?1 s?1. A photoexposure using green laser light (λ = 532 nm) is demonstrated to result in the formation of a polymer‐C60 shell encapsulating a monomer‐C60 bulk; such photo‐transformed nanorods exhibit an electron mobility of 4.7 × 10?3 cm2 V?1 s?1. It is notable that the utilized FET geometry only probes the polymer‐C60 nanorod surface shell, and that the monomer‐C60 bulk is anticipated to exhibit a higher mobility. Importantly, photoexposed nanorods can be conveniently processed as a stabile dispersion in common hydrophobic solvents, and this finding is attributed to the insoluble character of the polymer‐C60 shell.
Keywords:C60 nanorods  nanowhiskers  field‐effect transistors  liquid–  liquid‐interface precipitation  photopolymerization  Raman spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号