首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations on X‐ray enhanced sputter rates in argon cluster ion sputter depth profiling of polymers
Authors:Peter J Cumpson  Jose F Portoles  Naoko Sano
Institution:National EPSRC XPS User's Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, , Newcastle‐upon‐Tyne, NE1 7RU United Kingdom
Abstract:Traditionally polymer depth profiling by X‐ray photoelectron spectroscopy (XPS) has been dominated by the damage introduced by the ion beam rather than the X‐rays. With the introduction of polyatomic and especially argon gas cluster ion‐beam (GCIB) sources for XPS instruments, this is no longer the case, and either source of damage may be important (or dominate) under particular conditions. Importantly, while ion‐beam damage is a near‐surface effect, X‐ray damage may extend micrometres into the bulk of the sample, so that the accumulation of X‐ray damage during long depth profiles may be very significant. We have observed craters of similar dimensions to the X‐ray spot well within the perimeter of sputter craters, indicating that X‐rays can assist GCIB sputtering very significantly. We have measured experimentally sputter craters in 13 different polymers. The results show that X‐ray exposure can introduce much more topography than might previously have been expected, through both thermal and direct X‐ray degradation. This can increase the depth of a crater by a remarkable factor, up to three in the case of poly‐L‐lactic acid and polychlorotrifluorothylene under reasonably normal XPS conditions. This may be a major source of the loss of depth resolution in sputter depth profiles of polymers. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:XPS  depth profiling  cluster ion  GCIB  polymer  sputtering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号