首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transparent boundary conditions based on the pole condition for time‐dependent,two‐dimensional problems
Authors:Daniel Ruprecht  Achim Schädle  Frank Schmidt
Institution:1. Institute of Computational Science, USI Lugano, Lugano CH‐6904, Switzerland;2. Mathematisches Institut, Heinrich‐Heine‐Universit?t, Düsseldorf D‐40255, Germany;3. ZIB Berlin, Berlin D‐14195, Germany
Abstract:The pole condition approach for deriving transparent boundary conditions is extended to the time‐dependent, two‐dimensional case. Nonphysical modes of the solution are identified by the position of poles of the solution's spatial Laplace transform in the complex plane. By requiring the Laplace transform to be analytic on some problem‐dependent complex half‐plane, these modes can be suppressed. The resulting algorithm computes a finite number of coefficients of a series expansion of the Laplace transform, thereby providing an approximation to the exact boundary condition. The resulting error decays super‐algebraically with the number of coefficients, so relatively few additional degrees of freedom are sufficient to reduce the error to the level of the discretization error in the interior of the computational domain. The approach shows good results for the Schrödinger and the drift‐diffusion equation but, in contrast to the one‐dimensional case, exhibits instabilities for the wave and Klein–Gordon equation. Numerical examples are shown that demonstrate the good performance in the former and the instabilities in the latter case. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Keywords:drift diffusion equation  Klein Gordon equation  nonreflecting boundary condition  pole condition  Schrö  dinger equation  transparent boundary condition  wave equation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号