首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theory of variational calculation with a scaling correct moment functional to solve the electronic schrödinger equation directly for ground state one‐electron density and electronic energy
Authors:Sandor Kristyan
Institution:Department of Biological Nanochemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Institute of Molecular Pharmacology, 1025 Budapest, Pusztaszeri ut 59‐67, Hungary
Abstract:The reduction of the electronic Schrodinger equation or its calculating algorithm from 4N‐dimensions to a nonlinear, approximate density functional of a three spatial dimension one‐electron density for an N electron system which is tractable in practice, is a long‐desired goal in electronic structure calculation. In a seminal work, Parr et al. (Phys. Rev. A 1997, 55, 1792) suggested a well behaving density functional in power series with respect to density scaling within the orbital‐free framework for kinetic and repulsion energy of electrons. The updated literature on this subject is listed, reviewed, and summarized. Using this series with some modifications, a good density functional approximation is analyzed and solved via the Lagrange multiplier device. (We call the attention that the introduction of a Lagrangian multiplier to ensure normalization is a new element in this part of the related, general theory.) Its relation to Hartree–Fock (HF) and Kohn–Sham (KS) formalism is also analyzed for the goal to replace all the analytical Gaussian based two and four center integrals (∫gi( r 1)gk( r 2)rurn:x-wiley:00207608:media:QUA24345:tex2gif-stack-1d r 1d r 2, etc.) to estimate electron‐electron interactions with cheaper numerical integration. The KS method needs the numerical integration anyway for correlation estimation. © 2012 Wiley Periodicals, Inc.
Keywords:density functional theory  power series with correct density scaling  one‐electron density  ground state total electronic energy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号