首页 | 本学科首页   官方微博 | 高级检索  
     


Fast and high precision algorithms for optimization in large-scale genomic problems
Authors:Mester D I  Ronin Y I  Nevo E  Korol A B
Affiliation:Institute of Evolution, University of Haifa, Haifa 31905, Israel.
Abstract:There are several very difficult problems related to genetic or genomic analysis that belong to the field of discrete optimization in a set of all possible orders. With n elements (points, markers, clones, sequences, etc.), the number of all possible orders is n!/2 and only one of these is considered to be the true order. A classical formulation of a similar mathematical problem is the well-known traveling salesperson problem model (TSP). Genetic analogues of this problem include: ordering in multilocus genetic mapping, evolutionary tree reconstruction, building physical maps (contig assembling for overlapping clones and radiation hybrid mapping), and others. A novel, fast and reliable hybrid algorithm based on evolution strategy and guided local search discrete optimization was developed for TSP formulation of the multilocus mapping problems. High performance and high precision of the employed algorithm named guided evolution strategy (GES) allows verification of the obtained multilocus orders based on different computing-intensive approaches (e.g., bootstrap or jackknife) for detection and removing unreliable marker loci, hence, stabilizing the resulting paths. The efficiency of the proposed algorithm is demonstrated on standard TSP problems and on simulated data of multilocus genetic maps up to 1000 points per linkage group.
Keywords:Discrete optimization   Fast algorithm   Multilocus mapping
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号