首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AC conductance of transmembrane protein channels. The number of ionized residue mobile counterions at infinite dilution
Authors:Ervin Eric N  White Ryan J  Owens Treggon G  Tang John M  White Henry S
Institution:Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
Abstract:Simultaneous measurements of the AC and DC conductances of alpha-hemolysin (alphaHL) ion channels and outer membrane protein F (OmpF) porins in dilute ionic solutions is described. AC conductance measurements were performed by applying a 10 mV rms AC voltage across a suspended planar bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in the absence and presence of the protein and detecting the AC current response using phase-sensitive lock-in techniques. The conductances of individual alphaHL channels and OmpF porins were measured in symmetric KCl solutions containing between 5 and 1000 mM KCl. The AC and DC conductances of each protein were in agreement for all solution conditions, demonstrating the reliability of the AC method in single-channel recordings. Linear plots of conductance versus bulk KCl concentration for both proteins extrapolate to significant nonzero conductances (0.150 +/- 0.050 nS and 0.028 +/- 0.008 nS for OmpF and alphaHL, respectively) at infinite KCl dilution. The infinite dilution conductances are ascribed to mobile counterions of the ionizable residues within the protein lumens. A method of analyzing the plots of conductance vs KCl concentration is introduced that allows the determination of the concentration of mobile counterions associated with ionizable groups without knowledge of either the protein geometry or the ion mobilities. At neutral pH, an equivalent of 3 mobile counterions (K+ or Cl-) is estimated to contribute to the conductivity of the alphaHL channel.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号