首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamic and transport properties of (1,2-ethanediol + 1-nonanol) at temperatures from (298.15 to 313.15) K
Authors:Edward Zor?bski  Beata Lubowiecka-Kostka
Institution:Institute of Chemistry, Silesian University, Szkolna 9, 40-006 Katowice, Poland
Abstract:Densities and kinematic viscosities have been measured for (1,2-ethanediol + 1-nonanol) over the temperature range from (298.15 to 313.15) K. The speeds of sound in those mixtures within the temperature range from (293.15 to 313.15) K have been measured as well. Using the measurement results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, differently defined deviations of the speed of sound, and dynamic viscosity deviations) were calculated. The excess Gibbs free energies estimated by the use of the UNIQUAC model are also reported. The excess molar volumes and Gibbs free energies are positive, whereas the compressibility excesses are s-shaped. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of variations of the structure of the system caused by the participation of two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The effect of temperature is discussed. The predictive abilities of the McAllister equation for viscosities of the mixtures under test have also been examined.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号