首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic interaction effects of multiple delaminations in plates subject to cylindrical bending
Authors:Martin G Andrews  Roberta Massabò  Andrea Cavicchi  Brian N Cox
Institution:1. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA;2. Department of Civil, Environmental and Architectural Engineering, University of Genova, Genova 16145, Italy;3. Teledyne Scientific Co LLC, Thousand Oaks, CA, USA
Abstract:The interaction of multiple delaminations in a laminated composite plate loaded dynamically under plane strain conditions (cylindrical bending) is studied by a simple but accurate model that represents the delaminated plate as a set of Timoshenko beams joined by cohesive interfaces. Behavioral maps are derived, which distinguish conditions under which multiple delaminations tend to propagate with equal lengths from those under which one of them tends to grow as a dominant crack with relatively high velocity. In homogeneous systems, equal length growth is favored when the delaminations are equally spaced through the thickness. While the behavioral maps are similar to those for static loading conditions, significant dynamic effects arise in the details of propagation: the maximum energy release rate depends strongly on the loading rate, duration and profile; dynamic effects and crack-interaction effects are generally coupled; and strong hammering effects (chaotic collisions of sub-laminates) can occur during the free wave motions that arise after the load is removed. The hammering effect can be suppressed by imposing a large-scale bridging mechanism (bridging extending far in the crack wake, as from pins or stitches), whereupon energy release rates tend to show smooth oscillations associated with waves propagating on the scale of the whole specimen. The energy absorbed during failure will depend significantly on whether conditions favor multiple delaminations propagating with equal lengths or a single delamination growing dominantly.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号