首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and mechanical properties of three-dimensional five-directional braided composites
Authors:Dian-sen Li  Zi-xing Lu  Li Chen  Jia-lu Li
Affiliation:1. FML, School of Aerospace, Tsinghua University, Beijing 100084, PR China;2. School of Aeronautical Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, PR China;3. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tianjin Polytechnic University, Tianjin 300160, PR China
Abstract:Three-dimensional (3D) five-directional braided composites are significant structural materials in the fields of astronauts and aeronautics. On the basis of the 3D five-directional braiding process, three types of microstructural unit cell models are established with respect to the interior, surface and corner regions. The mathematical relationships among the structural parameters, such as fiber orientation, fiber volume fraction, the yarn packing factor, are derived. By using these three unit cell models, a micromechanical prediction procedure is described to simulate the stiffness and strength properties of 3D five-directional braided composites. Only the in situ constituent fiber and matrix properties of the composites and the fiber volume proportion are required in the simulation. The stress states generated in the constituent fiber and matrix materials are explicitly correlated with the overall applied load on the composites. The predictive stiffness and strength are in good agreement with available experimental data, which demonstrates the applicability of the present analytical model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号