首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon and Nitrogen Dynamics,and CO2 Efflux in the Calcareous Sandy Loam Soil Treated with Chemically Modified Organic Amendments
Authors:Ahmed Mohammed-Nour  Mohamed Al-Sewailem  Ahmed H El-Naggar  Mohamed H El-Saeid  Anwar A Aly  Jamal Elfaki
Abstract:In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3 when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.
Keywords:organic wastes  cow manure  CO2 effluxes  ammonia stripping  C:N ratio
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号