首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term performance of poly(vinyl chloride) cables. Part 1: Mechanical and electrical performances
Authors:M Ekelund  UW Gedde
Institution:a School of Chemical Science and Engineering, Fibre and Polymer Technology, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
b School of Electrical Engineering, Electromagnetic Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Abstract:Cables insulated with plasticized poly(vinyl chloride) were aged in air at temperatures between 80 °C and 180 °C and their conditions were assessed by indenter modulus measurements, tensile testing, infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Electrical testing of oven-aged cable samples was performed in order to relate the electrical functionality during a high-energy line break (HELB) to the mechanical properties and to establish a lifetime criterion. The mechanical data taken at room temperature after ageing could be superimposed with regard to ageing time and temperature. The ageing-temperature shift factor showed an Arrhenius temperature dependence. The jacketing material showed an immediate increase in stiffness (indenter modulus and Young's modulus) and a decrease in the strain at break on ageing; these changes were dominated by loss of plasticizer by migration which was confirmed by IR spectroscopy and DSC. The core insulation showed smaller changes in these mechanical parameters; the loss of plasticizer by migration was greatly retarded by the closed environment, according to data obtained by IR spectroscopy and DSC, and the changes in the mechanical parameters were due to chemical degradation (dehydrochlorination). A comparison of data obtained from this study and data from other studies indicates that extrapolation of data for the jacketing insulation can be performed according to the Arrhenius equation even down to service temperatures (20-50 °C). The low-temperature deterioration of the jacketing is, according to this scheme, dominated by loss of plasticizer by migration.
Keywords:Poly(vinyl chloride) cables  Ageing  Mechanical properties  Plasticizer migration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号