首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Applied creep theory for bodies with anisotropy due to plastic prestrain
Authors:V A Peleshko
Institution:(1) Central Research Institute of Engineering, Russian Space Agency, Pionerskaya 4, Korolev, Moscow reg., 141070, Russia
Abstract:Plastic strains in structures at the stages of manufacturing, testing, and approaching the operation regime cause anisotropic variations in the mechanical properties of materials, including creep strength. We consider the following special but practically important class of loading processes for originally isotropic materials: a simple active plastic strain is followed by a long-term steady-state loading within the elastic limits. To describe the second stage, we present the creep strain deviator in the form of an additive orthogonal decomposition in the directions of the repeated loading and the vector anisotropy. The coefficients in the decomposition are material functions of time, of the intensities of the preliminary and repeated loadings, and of the angle between the directions of these loadings. We obtain conditions on the material functions under which, at any given time instant, there is a one-to-one continuous correspondence between the stress and strain tensors for the model proposed and the boundary-value problem in the generalized statement has a unique solution; we also prove the convergence of the iteration method of elastic solutions used to find this unique solution. The model is identified according to the creep diagrams (under steady-state stresses of different values) determined for the material in the original state and after the plastic prestrain at an angle (zero, extended, and intermediate) to the direction of the repeated loading. We show that our results are in good agreement with the results available in the literature concerning experiments in this class of processes for stainless steel at high temperature. We propose an engineering version of the theory in which only the experimental data for uniaxial tension are used. We discuss the versions of the model for the cases in which the plastic preloading is cyclic (one-dimensional or circular) and the repeated loading is unsteady.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号