首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Boundary-layer separation on conical bodies
Authors:E N Bondarev
Abstract:Some characteristics of the variation in the linear dimensions of the flow separation zones on conical bodies with expanding conical skirts and of variation of the pressure within these zones as a function of variation of the Mach number, Reynolds number, and intensity of the disturbance that causes the boundary layer separation are examined. Experiments were conducted in laminar, transitional, and turbulent flows in flow separation regions. The interaction of viscous and nearly inviscid flows is quite common. This phenomenon occurs in flow past a concave corner, when a compression shock impinges on a boundary layer, and in many other cases. The characteristics of this phenomenon in flow about two-dimensional bodies have been investigated experimentally in 1, 2] and other studies. Attempts have been made to analyze the interaction of compression shocks with the boundary layer theoretically. In “free” separated flows, when the points of separation and reattachment of the boundary layer are not fixed (for example, on a flat plate with a long wedge attached to it), theoretical studies are usually made within the framework of the boundary layer theory with use of the approximate integral methods 3, 4]. In this article we examine some results from studies of free separated flows on conical bodies with conical skirts in laminar, transitional, and turbulent flows (Fig. 1).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号