首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Primal-dual first-order methods with $${\mathcal {O}(1/\epsilon)}$$ iteration-complexity for cone programming
Authors:Guanghui Lan  Zhaosong Lu  Renato D C Monteiro
Institution:(1) Faculty of Mathematics, University “Al.I.Cuza” Iaşi, 700506 Iaşi, Romania;(2) Romania and Institute of Mathematics Octav Mayer, Iaşi, Romania
Abstract:In this paper we consider the general cone programming problem, and propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it. We then discuss first-order methods suitable for solving these reformulations, namely, Nesterov’s optimal method (Nesterov in Doklady AN SSSR 269:543–547, 1983; Math Program 103:127–152, 2005), Nesterov’s smooth approximation scheme (Nesterov in Math Program 103:127–152, 2005), and Nemirovski’s prox-method (Nemirovski in SIAM J Opt 15:229–251, 2005), and propose a variant of Nesterov’s optimal method which has outperformed the latter one in our computational experiments. We also derive iteration-complexity bounds for these first-order methods applied to the proposed primal-dual reformulations of the cone programming problem. The performance of these methods is then compared using a set of randomly generated linear programming and semidefinite programming instances. We also compare the approach based on the variant of Nesterov’s optimal method with the low-rank method proposed by Burer and Monteiro (Math Program Ser B 95:329–357, 2003; Math Program 103:427–444, 2005) for solving a set of randomly generated SDP instances.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号