End effects influence short model peptide conformation |
| |
Authors: | He Liu Navarro Abel E Shi Zhengshuang Kallenbach Neville R |
| |
Affiliation: | School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China. |
| |
Abstract: | Previously, we derived a P(II) propensity scale using N- and C-terminally blocked host-guest peptide model AcGGXGGNH(2) (X ≠ Gly) and concluded that P(II) represents a dominant conformation in the majority of this series of 19 peptides (Shi et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17964-17968). Recently, Schweitzer-Stenner and co-workers examined a series of eight short host-guest tripeptides with the sequence GXG (X = A, V, F, S, E, L, M, and K) in which both N- and C-ends were unblocked and reported major differences in P(II) content for F, V, and S compared to our scale (Hagarman et al. J. Am. Chem. Soc. 2010, 132, 540-551). We have investigated four representative amino acids (X = A, V, F, and S) in three series of peptides (GXG, AcGXGNH(2), and AcGGXGGNH(2)) as a function of pH in this study. Our data show that P(II) content in the GXG series (X = A, V, F, and S) is pH-dependent and that the conformations of each amino acid differ markedly between the GXG and AcGXGNH(2)/AcGGXGGNH(2) series. Our results indicate that P(II) scales are sequence and context dependent and the presence of proximal charged end groups exerts a strong effect on P(II) population in short model peptides. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|