首页 | 本学科首页   官方微博 | 高级检索  
     检索      

碱金属修饰的多孔石墨烯的储氢性能
引用本文:元丽华,巩纪军,王道斌,张材荣,张梅玲,苏俊燕,康龙.碱金属修饰的多孔石墨烯的储氢性能[J].物理学报,2020(6):267-275.
作者姓名:元丽华  巩纪军  王道斌  张材荣  张梅玲  苏俊燕  康龙
作者单位:兰州理工大学理学院;兰州理工大学材料科学与工程学院;兰州大学核科学与技术学院
基金项目:甘肃省自然科学基金(批准号:17JR5RA123);国家自然科学基金(批准号:51562022);兰州理工大学博士基金(批准号:061801)和兰州理工大学红柳一流学科建设项目资助的课题~~
摘    要:基于第一性原理深入研究了碱金属原子(Li,Na,K)修饰的多孔石墨烯(PG)体系的储氢性能,并且通过从头算分子动力学模拟了温度对Li-PG吸附的H2分子稳定性的影响.研究结果表明,PG结构的碳环中心是碱金属原子最稳定的吸附位置,PG单胞最多可以吸附4个碱金属原子,Li原子被束缚最强,金属原子间无团聚的倾向;H2分子通过极化机制吸附在碱金属修饰的PG结构上,每个金属原子周围最多可以稳定地吸附3个H2分子;Li-PG对H2分子的吸附最强(平均吸附能为-0.246 eV/H2),Na-PG对H2分子的吸附较弱(平均吸附能为-0.129 eV/H2),K-PG对H2分子的吸附最弱(平均吸附能为-0.056 eV/H2),不适合用做储氢材料;在不考虑外界压强且温度为300 K的情况下,Li-PG结构可稳定地吸附9个H2分子,储氢量为9.25 wt.%;在400 K时,有7个吸附H2分子脱离Li-PG的束缚,在600-700 K的范围内,吸附H2分子全部脱离了Li-PG体系的束缚.

关 键 词:多孔石墨烯  储氢  第一性原理  分子动力学

Hydrogen storage capacity of alkali metal atoms decorated porous graphene
Yuan Li-Hua,Gong Ji-Jun,Wang Dao-Bin,Zhang Cai-Rong,Zhang Mei-Ling,Su Jun-Yan,Kang Long.Hydrogen storage capacity of alkali metal atoms decorated porous graphene[J].Acta Physica Sinica,2020(6):267-275.
Authors:Yuan Li-Hua  Gong Ji-Jun  Wang Dao-Bin  Zhang Cai-Rong  Zhang Mei-Ling  Su Jun-Yan  Kang Long
Institution:(School of Sciences,Lanzhou University of Technology,Lanzhou 730050,China;School of Material Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China;School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China)
Abstract:Porous graphene(PG),a kind of graphene-related material with nanopores in the graphene plane,exhibits novel properties different from those of pristine graphene,leading to its potential applications in many fields.Owing to periodic nanopores existing naturally in the two-dimensional layer,PG can be used as an ideal candidate for hydrogen storage material.High hydrogen storage capacity of Li-decorated PG has been investigated theoretically,but the effect of temperature on the stability of the H2 adsorbed on Li-PG has been not discussed yet.In this paper,by using the first-principles method,the hydrogen storage capacity on alkaline metal atoms(Li,Na,K)decorated porous graphene is investigated in depth with generalized gradient approximation,and the effect of the temperature on the stability of the hydrogen adsorption system is elucidated by the ab initio molecular-dynamics simulation.The results show that the most favorable adsorption sites of Li,Na and K are the hollow center sites of the C hexagon,and four alkaline metal atoms can be adsorbed stably on both sides of PG unit cell without clustering.Alkaline metal adatoms adsorbed on PG become positively charged by transferring charge to PG and adsorbed H2 molecules,and three H2 molecules can be adsorbed around each alkaline metal atom.By analyzing the Mulliken atomic populations,charge density differences and density of states of H2 adsorbed on Li-PG system,we find that the H2 molecules are adsorbed on alkaline metal atoms decorated graphene complex by attractive interaction between positively charged alkaline metal adatoms and negatively charged H and weak van der Waals interaction.Twelve H2 molecules are adsorbed on both sides of PG decorated with alkaline metal atoms.The average adsorption energy of H2 adsorbed on Li-PG,Na-PG and K-PG are–0.246,–0.129 and–0.056 eV/H2,respectively.It is obvious that the hydrogen adsorption capacity of Li-PG system is strongest,and the hydrogen adsorption capacity of K-PG is weakest,thus K-PG structure is not suitable for hydrogen storage.Furthermore,by the ab initio moleculardynamic simulation,in which the NVT ensemble is selected but the external pressure is not adopted,the effect of temperature on the stability of H2 molecules adsorbed on Li-PG system is elucidated.The result shows that the configuration of Li-PG is very stable,H2 molecules are stably adsorbed around the Li atoms at low temperature,and some H2 molecules start to be desorbed from the Li atoms with the increase of temperature.At 200 K,H2 molecules begin to move away from Li atoms,and two H2 molecules escape from the binding of the Li atoms at 250 K.At 300 K,nine H2 molecules can be stably absorbed on both sides of Li-PG,and the gravimetric hydrogen storage capacity can reach up to 9.25 wt.%,which is much higher than the the US Department of Energy target value of 5.5 wt.%for the year 2017.With the increase of temperature,more adsorbed H2 molecules are desorbed,seven H2 molecules can be desorbed at 400 K,and all H2 molecules are completely desorbed in a temperature range of 600–700 K.
Keywords:porous graphene  hydrogen storage  first-principles  molecular-dynamic
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号