首页 | 本学科首页   官方微博 | 高级检索  
     

气相法合成偏二氯乙烯的高稳定CsNO3/SiO2催化剂
引用本文:靳燕霞,汤岑,孟秀清,王小霞,谢冠群,罗孟飞,李小年. 气相法合成偏二氯乙烯的高稳定CsNO3/SiO2催化剂[J]. 物理化学学报, 2016, 32(2): 510-518. DOI: 10.3866/PKU.WHXB201511134
作者姓名:靳燕霞  汤岑  孟秀清  王小霞  谢冠群  罗孟飞  李小年
作者单位:1 浙江师范大学物理化学研究所, 先进催化材料教育部重点实验室, 浙江金华 3210042 浙江工业大学工业催化研究所, 绿色化学合成技术国家重点实验室培育基地, 杭州 310032
基金项目:the National Natural Science Foundation of China(21476207);Open Research Fund of Top Key Discipline ofChemistry in Zhejiang Provincial Colleges, China, and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, China(ZJHX201413)
摘    要:用浸渍法制备CsNO3/SiO2催化剂,用于气相催化裂解1, 1, 2-三氯乙烷(TCE)制偏二氯乙烯(VDC)反应,考察了反应温度对CsNO3/SiO2催化剂失活的影响。研究发现,在较低反应温度( < 350 ℃)时, CsNO3/SiO2催化剂容易失活,在较高反应温度(> 400 ℃)时催化剂的活性较高且不易失活。反应后CsNO3/SiO2催化剂中CsNO3物种转变为CsCl,催化剂表面存在积炭。导致催化剂失活的主要原因不是Cs物种转变和积炭,而是含氯反应产物在低温反应时难以从催化剂表面脱附。这些含氯反应产物能够高温脱附,从而使低温反应失活的催化剂再生。CsNO3/SiO2催化剂在400 ℃下100 h寿命实验中, TCE转化率和VDC选择性分别稳定为98%和78%,具有较好的工业应用前景。

关 键 词:偏二氯乙烯  1   1   2-三氯乙烷  CsNO3  脱氯化氢反应  多相反应  
收稿时间:2015-09-14

Highly Stable CsNO3/SiO2 Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method
Yan-Xia JIN,Cen TANG,Xiu-Qing MENG,Xiao-Xia WANG,Guan-Qun XIE,Meng-Fei LUO,Xiao-Nian LI. Highly Stable CsNO3/SiO2 Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 510-518. DOI: 10.3866/PKU.WHXB201511134
Authors:Yan-Xia JIN  Cen TANG  Xiu-Qing MENG  Xiao-Xia WANG  Guan-Qun XIE  Meng-Fei LUO  Xiao-Nian LI
Affiliation:1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China;2. State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Industrial Catalysis Institute, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Abstract:CsNO3/SiO2 catalysts were prepared using an impregnation method, and were applied in the vapor phase catalytic synthesis of vinylidene chloride (VDC) from 1, 1, 2-trichloroethane (TCE). The influence of reaction temperature on the deactivation of CsNO3/SiO2 catalysts was investigated in detail. It was found that low reaction temperatures ( < 350 ℃) lead to a rapid deactivation, while high reaction temperatures (> 400 ℃) result in a high and stable catalytic activity. During the dehydrochlorination process, CsNO3 species were transformed into CsCl, and coke was formed and deposited on the catalyst surface. However, the chemical change of the Cs species and deposited coke were not the main reason for the deactivation of CsNO3/SiO2 catalyst. Some chlorine-containing species (organic products or HCl) were formed during the reaction and were difficult to desorb from the catalyst surface, which accounts for the deactivation of CsNO3/SiO2 catalysts at low reaction temperatures. High temperature treatment (550 ℃) in a non-oxidizing atmosphere could remove the contaminants and regenerate the catalysts completely. The life test of CsNO3/SiO2 catalyst was carried out at 400 ℃ for 100 h. The TCE conversion and the selectivity to VDC remained stable at 98% and 78%, respectively, showing good prospect for industrial applications.
Keywords:Vinylidenechloride  1   1   2-Trichloroethane  CsNO3  Dehydrochlorination  Heterogeneous reaction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号