首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two methanes are better than one: a density functional theory study of the reactions of Mo2Oy- (y = 2-5) with methane
Authors:Mayhall Nicholas J  Raghavachari Krishnan
Institution:Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
Abstract:The mechanisms of chemical reactions of molybdenum suboxide clusters Mo(2)O(n)- (n = 2-5) with methane are investigated using B3LYP hybrid density functional theory and polarized basis sets. In particular, we focus on the reactions of the most stable structural isomers of Mo(2)O(2,3,4,5)- that lead to single molybdenum species such as HMoO(2)CH(3)-, as seen in the recent experimental study of Jarrold and co-workers. We find that, while all experimentally observed products are unfavorable due to the high amount of energy required to cleave the metal oxide, the formation of HMoO(2)CH(3)- is least endothermic. Even in this case, the thermodynamics of these reactions is very unfavorable when a single methane is reacted with the metal oxide. However, we find that the sequential addition of two methanes produces HMoO(2)CH(3)- (and another neutral molecule whose identity depends on the number of oxygens in the metal oxide) at a much lower thermodynamic cost. Further, the overall reaction barriers are much lower when the second methane adds prior to the Mo(2)O(2,3,4,5)- cleavage. The methane addition at each metal center oxidizes the metals to produce a species that is then stable enough to afford the Mo-Mo cleavage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号