首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Mg2+ and Cd2+ on the interaction between sparfloxacin and calf thymus DNA
Authors:Yuan Xiao-Ying  Guo Dong-Sheng  Wang Lin-Li
Institution:College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. yuanxy@sxu.edu.cn
Abstract:Mg(2+) and Cd(2+) have different binding capacity to sparfloxacin, and have different combination modes with calf thymus DNA. Selecting these two different metal ions, the influence of them on the binding constants between SPFX and calf thymus DNA, as well as the related mechanism have been studied by using absorption and fluorescence spectroscopy. The result shows that Cd(2+) has weak binding capacity to SPFX in the SPFX-Cd(2+) binary system, but can decrease the binding between SPFX and DNA obviously in SPFX-DNA-Cd(2+) ternary system. Mg(2+) has strong binding capacity to SPFX. It can increase the binding between SPFX and DNA at concentrations <0.01 mM, and decrease the binding between them at concentrations >0.01 mM. Referring to the different modes of Mg(2+) and Cd(2+) binding to DNA, the mechanism of the influence of metal ions on the binding between SPFX and DNA has been proposed. SPFX can directly bind to DNA by chelating DNA base sites. If a metal ion at certain concentration mainly binds to DNA bases, it can decrease the binding constants between SPFX and DNA through competing with SPFX. While if a metal ion at certain concentration mainly binds to phosphate groups of DNA, it can increase the binding constants by building a bridge between SPFX and DNA. The influence direction of metal ions on the binding between quinolone and DNA relays on their binding ratio of affinity for bases to phosphate groups on DNA. Our result supports Palumbo's conclusion that the binding between SPFX and the phosphate groups is the precondition for the combination between SPFX and DNA, which is stabilized through stacking interactions between the condensed rings of SPFX and DNA bases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号