首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics and Mechanism of the Epoxidation of Alkyl-Substituted Alkenes by Hydrogen Peroxide, Catalyzed by Methylrhenium Trioxide
Authors:Al-Ajlouni Ahmad M  Espenson James H
Institution:Ames Laboratory and Department of Chemistry, Iowa State University, Ames, Iowa 50011.
Abstract:Epoxidations of alkyl-substituted alkenes, with hydrogen peroxide as the oxygen source, are catalyzed by CH(3)ReO(3) (MTO). The kinetics of 28 such reactions were studied in 1:1 CH(3)CN-H(2)O at pH 1 and in methanol. To accommodate the different requirements of these reactions, (1)H-NMR, spectrophotometric, and thermometric techniques were used to acquire kinetic data. High concentrations of hydrogen peroxide were used, so that diperoxorhenium complex CH(3)Re(O)(eta(2)-O(2))(2)(H(2)O), B, was the only predominant and reactive form of the catalyst. The reactions between B and the alkenes are about 1 order of magnitude more rapid in the semiaqueous solvent than in methanol. The various trends in reactivity are medium-independent. The rate constants for B with the aliphatic alkenes correlate closely with the number of alkyl groups on the olefinic carbons. The reactions become markedly slower when electron-attracting groups, such as halo, hydroxy, cyano, and carbonyl, are present. The rate constants for catalytic epoxidations with B and those reported for the stoichiometric reactions of dimethyldioxirane show very similar trends in reactivity. These findings suggest a concerted mechanism in which the electron-rich double bond of the alkene attacks a peroxidic oxygen of B. These data, combined with those reported for the epoxidation of styrene (a term intended to include related molecules with ring and/or aliphatic substituents) by B and by the monoperoxo derivative of MTO, suggest that all of the rhenium-catalyzed epoxidations occur by a common mechanism. The geometry of the system at the transition state can be inferred from these data, which suggest a spiro arrangement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号