首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption of highly charged polyelectrolytes onto an oppositely charged porous substrate
Authors:Horvath Andrew T  Horvath A Elisabet  Lindström Tom  Wågberg Lars
Affiliation:Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
Abstract:The adsorption behavior of highly charged cationic polyelectrolytes onto porous substrates is electrostatic in nature and has been shown to be highly dependent on the polyelectrolyte properties. Copolymers of acrylamide (AM) and diallyldimethylammonium chloride (DADMAC) were synthesized to have a range of macromolecular properties (i.e., charge density and molecular mass). Traditional titration methods have been complemented by fluorescence labeling techniques that were developed to directly observe the extent that fluorescently labeled poly(AM- co-DADMAC) adsorbs into the pore structure of a cellulosic substrate. Although contributing to the electrostatic driving force, the charge density acts to limit adsorption to the outermost surface under electrolyte-free conditions. However, adsorption into the pores can occur if both the molecular mass and charge density of poly(AM- co-DADMAC) are sufficiently low. Adsorption initially increases as the electrolyte concentration is increased. However, the electrostatic persistence length of poly(AM- co-DADMAC) restricts the polyelectrolyte from entering the pores. Therefore, changes in the adsorption behavior at moderate electrolyte concentrations have been attributed to swelling of the polyelectrolyte layer at the fiber exterior. The adsorption behavior changes again at high electrolyte concentrations such that poly(AM- co-DADMAC) could adsorb into the pore structure. This occurred when the electrolyte concentration was sufficient to screen the electrostatic persistence length of poly(AM- co-DADMAC), provided that the entropic driving force for adsorption still existed. It is suggested that adsorption into the pore structure is a kinetic process that is governed by localized electrostatic interactions between poly(AM- co-DADMAC) and the charges located within the pores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号